74LVC1G384

Bilateral switch

Rev. 01 - 26 February 2004
Product data sheet

1. General description

The 74LVC1G384 is a high-speed Si-gate CMOS device.
The 74LVC1G384 provides an analog switch. The switch has input and output terminals (pins Y and Z) and an active LOW enable input (pin \bar{E}). When pin \bar{E} is HIGH, the analog switch is turned off.

2. Features

- Very low ON-resistance:
- 7.5Ω (typ) at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
-6.5 Ω (typ) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
-6.0 Ω (typ) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
- ESD protection:
- HBM EIA/JESD22-A114-A exceeds 2000 V
- MM EIA/JESD22-A115-A exceeds 200 V.
- High noise immunity
- CMOS low power consumption
- Direct interface TTL-levels
- Latch-up performance meets requirements of JESD78 Class I
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

3. Quick reference data

Table 1: Quick reference data
Ground $=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C} ; t_{r}=t_{f} \leq 3.0 \mathrm{~ns}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$t_{\text {PZH, }}$, ${ }_{\text {PZL }}$	turn-on time E to Y or Z	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$				
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	4.8	-	ns
		$\mathrm{V}_{C C}=5.0 \mathrm{~V}$	-	3.3	-	ns
$t_{\text {PHZ }}$, tPLZ turn-off time E to Y or Z		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$				
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	5.4	-	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-	3.6	-	ns
C_{1}	input capacitance		-	2	-	pF

Table 1: Quick reference data ...continued
Ground $=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C} ; t_{r}=t_{f} \leq 3.0 \mathrm{~ns}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz} ;$	$[1]$ $[2]$	15.2	-	pF
C_{S}	switch capacitance	OFF-state	-	5	-	pF
		ON-state	-	9.5	-	pF

[1] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{o}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}}=$ maximum switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .
[2] The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.

4. Ordering information

Table 2: Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LVC1G384GW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	plastic surface mounted package; 5 leads	SOT353
$74 \mathrm{LVC1G384GV}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	plastic surface mounted package; 5 leads	SOT753

5. Marking

Table 3: Marking

Type number	Marking code
74LVC1G384GW	YL
74LVC1G384GV	YL

6. Functional diagram

Fig 3. Logic diagram.

7. Pinning information

7.1 Pinning

Fig 4. Pin configuration.

7.2 Pin description

Table 4: Pin description

Pin	Symbol	Description
1	Y	independent input or output
2	Z	independent output or input
3	GND	ground (0 V)
4	\bar{E}	enable input (active LOW)
5	V $_{\text {CC }}$	supply voltage

8. Functional description

8.1 Function table

Table 5: Function table [1]

Input $\overline{\text { E }}$	Switch
L	ON-state
H	OFF-state
$[1]$	$H=$ HIGH voltage level;
	$=$ LOW voltage level.

9. Limiting values

Table 6: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		$\underline{[1]}-0.5$	+6.5	V
I_{IK}	input diode current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	-50	mA
I_{SK}	switch diode current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 50	mA
$\mathrm{~V}_{\mathrm{S}}$	DC switch voltage range	enable and disable mode	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
I_{S}	DC switch source or sink current	$\mathrm{V}_{\mathrm{S}}>-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 50	mA
$\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{GND}}$	V_{CC} or GND current		-	± 100	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	250	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

10. Recommended operating conditions

Table 7: Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{CC}	supply voltage		1.65	-	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	-	5.5	V
$\mathrm{~V}_{\mathrm{S}}$	DC switch voltage range	$\underline{[1]}$	0	-	V_{CC}	V
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature		-40	-	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.7 V	0	-	20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	0	-	10	$\mathrm{~ns} / \mathrm{V}$

[1] To avoid drawing V_{Cc} current out of terminal Z , when switch current flows in terminal Y , the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal Z , no V_{CC} current will flow out of terminal Y . In this case there is no limit for the voltage drop across the switch.

11. Static characteristics

Table 8: Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \underline{[1]}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.7	-	-	V
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V	2.0	-	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
VIL	LOW-level input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.7	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	-	0.8	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	$0.3 \times \mathrm{V}_{\text {c }}$	V
I_{LI}	input leakage current on control pin	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	[2] -	± 0.1	± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	analog switch OFF-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mid \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; see Figure 5 } \end{aligned}$	[2] -	± 0.1	± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(ON })}$	analog switch ON-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mid \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; see Figure } 6 \end{aligned}$	[2] -	± 0.1	± 5	$\mu \mathrm{A}$
$I_{\text {cc }}$	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\mathrm{S}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	[2] -	0.1	10	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per control pin	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	[2] -	5	500	$\mu \mathrm{A}$
C_{1}	input capacitance		-	2	-	pF
$\mathrm{R}_{\text {ON(} \text { (eak) }}$	switch ON-state resistance (peak)	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}; see Figure 7 and Figure 8				
		$\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	35	130	Ω
		$\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	14	30	Ω
		$\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	11.5	25	Ω
		$\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	8.5	20	Ω
		$\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	6.5	15	Ω
$\mathrm{R}_{\text {ON(rail) }}$	switch ON-state resistance rail	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$				
		$\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	10	30	Ω
		$\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	8.5	20	Ω
		$\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	7.5	18	Ω
		$\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	6.5	15	Ω
		$\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	6	10	Ω
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$				
		$\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	12	30	Ω
		$\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	8.5	20	Ω
		$\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	7.5	18	Ω
		$\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	6.5	15	Ω
		$\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	6	10	Ω

Table 8: Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
RoN(flat)	switch ON-state resistance flatness	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}; see Figure 9	[3]			
		$\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	-	100	-	Ω
		$\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	17	-	Ω
		$\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	10	-	Ω
		$\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	5	-	Ω
		$\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-	3	-	Ω
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7	-	-	V
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V	2.0	-	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
VIL	LOW-level input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	-	$0.35 \times \mathrm{V}_{\text {CC }}$	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.7	V
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V	-	-	0.8	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	$0.3 \times \mathrm{V}_{\text {cc }}$	V
$\mathrm{I}_{\text {LI }}$	input leakage current on control pin	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	analog switch OFF-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}} ;\left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; see Figure 5 } \end{aligned}$	-	-	200	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(ON })}$	analog switch ON-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ;\left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; see Figure 6 } \end{aligned}$	-	-	200	$\mu \mathrm{A}$
ICC	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\mathrm{S}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-	-	200	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per control pin	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	-	-	5000	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{ON} \text { (peak) }}$	switch ON-state resistance (peak)	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} ; \text { see } \underline{\text { Figure } 7} \\ & \mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	-	180	Ω
		$\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	45	Ω
		$\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	-	38	Ω
		$\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	-	30	Ω
		$\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	23	Ω

Table 8: Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
R ${ }_{\text {ON(rail) }}$	switch ON-state resistance rail	$\mathrm{V}_{1}=\mathrm{GND}$				
		$\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	-	45	Ω
		$\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	30	Ω
		$\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	-	27	Ω
		$\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	-	23	Ω
		$\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	15	Ω
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$				
		$\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	-	45	Ω
		$\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	30	Ω
		$\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	-	27	Ω
		$\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	-	23	Ω
		$\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	15	Ω

[1] Typical values are measured at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
[2] These typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
[3] These typical values are measured over the operating temperature range from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

$V_{I}=V_{C C}$ and $V_{O}=G N D ;$
$V_{1}=G N D$ and $V_{O}=V_{C C}$
Fig 5. Test circuit for measuring switch OFF-state current.

$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}} ; \mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{S}} / \mathrm{I}_{\mathrm{S}}$
Fig 7. Test circuit for measuring switch ON-resistance.

$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{O}}=$ open circuit;
$V_{I}=G N D$ and $V_{O}=$ open circuit
Fig 6. Test circuit for measuring switch ON-state current.

$\mathrm{V}_{\mathrm{S}}=\mathrm{GND}$ to V_{CC}.
Fig 8. Typical switch ON-resistance as a function of input voltage.

Fig 9. Switch ON-resistance at various supply voltages as a function of input voltage.

12. Dynamic characteristics

Table 9: Dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); test circuit Figure 12.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \underline{[1]}$						
$\mathrm{t}_{\text {PHL }}$, tPLH	propagation delay Y to Z or Z to Y	see Figure 10	[2]			
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	0.8	2.0	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	0.4	1.2	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	0.4	1.0	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	0.3	0.8	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	0.2	0.6	ns
$\mathrm{t}_{\text {PzH }}, \mathrm{t}_{\text {PzL }}$	turn-on time $\overline{\mathrm{E}}$ to Y or Z	see Figure 11				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	1.0	10.0	12.0	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.0	5.7	6.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	1.0	5.4	6.0	ns
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V	1.0	4.8	5.0	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	1.0	3.3	4.2	ns
$\mathrm{t}_{\text {PHZ }}, \mathrm{tPLZ}$	turn-off time $\overline{\mathrm{E}}$ to Y or Z	see Figure 11				
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	1.0	7.4	10.0	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.0	4.1	6.9	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	1.0	4.9	7.5	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.0	5.4	6.5	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	1.0	3.6	5.0	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	[3] [4]			
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	13.7	-	pF
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	15.2	-	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	-	18.3	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
$\mathrm{t}_{\text {PHL }}, \mathrm{tPLH}$	propagation delay Y to Z or Z to Y	see Figure 10	[2]			
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	-	3.0	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	2.0	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	-	1.5	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	-	1.5	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	1.0	ns
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	turn-on time $\overline{\mathrm{E}}$ to Y or Z	see Figure 11				
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	1.0	-	15.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.0	-	8.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	1.0	-	8.0	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.0	-	6.5	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	1.0	-	5.5	ns

Table 9: Dynamic characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); test circuit Figure 12.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
tPHZ, tPLZ	turn-off time \bar{E} to Y or Z	see Figure 11				
		$\mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V				
		$\mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.0	-	13.0	ns
		$\mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	1.0	-	9.0	ns
		$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.0	-	9.5	ns
	$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	1.0	-	8.5	ns	
			1.0	-	6.5	ns

[1] All typical values are measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.
[2] $t_{\text {PHL }}$ and $\mathrm{t}_{\text {PLH }}$ propagation delay is the calculated RC time constant of the typical switch ON-resistance of the switch and the specified capacitance when driven by an ideal voltage source (zero output impedance).
[3] $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{o}$ where:
$f_{i}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}}=$ maximum switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .
[4] The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.

13. Waveforms

Measurement points are given in Table 10.
Logic levels: V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
Fig 10. Input (Y or Z) to output (Z or Y) propagation delays.

Table 10: Measurement points

Supply voltage	Input	Output
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$
1.65 V to 1.95 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\mathrm{CC}}$
2.3 V to 2.7 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\mathrm{CC}}$
2.7 V	1.5 V	1.5 V
3.0 V to 3.6 V	1.5 V	1.5 V
4.5 V to 5.5 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\mathrm{CC}}$

Measurement points are given in Table 11.
Logic levels: V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
Fig 11. Turn-on and turn-off times.

Table 11: Measurement points

Supply voltage	Input	Output		
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{x}}$	$\mathbf{V}_{\mathbf{Y}}$
1.65 V to 1.95 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \times \mathrm{V}_{\mathrm{CC}}$
2.3 V to 2.7 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \times \mathrm{V}_{\mathrm{CC}}$
2.7 V	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
3.0 V to 3.6 V	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
4.5 V to 5.5 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$

Test data is given in Table 12.
Definitions test circuit:
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{L}=$ Load resistance.
$\mathrm{V}_{\mathrm{EXT}}=$ Test voltage for switching times.
Fig 12. Load circuitry for switching times.

Table 12: Test data

Supply voltage	Input		Load		$\mathrm{V}_{\text {EXT }}$		
$\mathrm{V}_{\text {cc }}$	V_{1}	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	C_{L}	\mathbf{R}_{L}	$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PHZ }}$	$\mathrm{t}_{\text {PZL, }} \mathrm{t}_{\text {PLZ }}$
1.65 V to 1.95 V	$\mathrm{V}_{\text {CC }}$	$\leq 2.0 \mathrm{~ns}$	30 pF	$1 \mathrm{k} \Omega$	open	GND	$2 \times V_{C C}$
2.3 V to 2.7 V	$V_{C C}$	$\leq 2.0 \mathrm{~ns}$	30 pF	500Ω	open	GND	$2 \times \mathrm{V}_{\text {CC }}$
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500Ω	open	GND	6.0 V
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500Ω	open	GND	6.0 V
4.5 V to 5.5 V	$\mathrm{V}_{\text {CC }}$	≤ 2.5 ns	50 pF	500Ω	open	GND	$2 \times \mathrm{V}_{\mathrm{CC}}$

14. Additional dynamic characteristics

Table 13: Additional dynamic characteristics
At recommended conditions; typical values measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$d_{\text {sin }}$	sine-wave distortion	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \text { see Figure } 13 \end{aligned}$				
		$\mathrm{V}_{\text {CC }}=1.65 \mathrm{~V}$	-	0.032	-	\%
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	0.008	-	\%
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	0.006	-	\%
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	0.001	-	\%
		$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \text { see Figure } 13 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	0.068	-	\%
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	0.009	-	\%
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	0.008	-	\%
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	0.006	-	\%
$\mathrm{f}_{\text {ON-state(res) }}$	switch ON-state signal frequency response	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \text { see Figure } 14 \end{aligned}$	[1]			
		$\mathrm{V}_{\text {CC }}=1.65 \mathrm{~V}$	-	135	-	MHz
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	145	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	150	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	155	-	MHz
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \text { see Figure } 14 \end{aligned}$	[1]			
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	>500	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	>500	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	>500	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	>500	-	MHz
$\alpha_{\text {OFF(tt) }}$	switch OFF-state signal feed-through attenuation	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \text { see } \underline{\text { Figure } 15} \end{aligned}$	[2]			
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ;$ $\text { see Figure } 15$	[2]			
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$	-	-37	-	dB
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-37	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-37	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-37	-	dB

Table 13: Additional dynamic characteristics ...continued
At recommended conditions; typical values measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {ct }}$	crosstalk between control input to signal output	$\begin{aligned} & R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns} ; \text { see Figure } 16 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	69	-	mV
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	87	-	mV
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	156	-	mV
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	302	-	mV
$\mathrm{f}_{\text {max }}$	frequency response$(-3 \mathrm{~dB})$	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$; see Figure 14	[1]			
		$V_{C C}=1.65 \mathrm{~V}$	-	200	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	350	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	410	-	MHz
		$V_{C C}=4.5 \mathrm{~V}$	-	440	-	MHz
Q	injection charge	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF} ; \mathrm{V}_{\text {gen }}=0 \mathrm{~V} ; \mathrm{R}_{\text {gen }}=0 \Omega ; \\ & \mathrm{f}=1 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 5.5 \mathrm{~V} ; \text { see Figure } 17 \end{aligned}$	[3] -	0.05	-	pC

[1] Adjust f_{i} voltage to obtain 0 dBm level at output. Increase f_{i} frequency until dB meter reads -3 dB .
[2] Adjust f_{i} voltage to obtain 0 dBm level at input.
[3] Definition: $\mathrm{Q}=\Delta \mathrm{V}_{\text {out }} \times \mathrm{C}_{\mathrm{L}}$. Guaranteed by design.

Fig 13. Test circuit for measuring sine-wave distortion.

Fig 14. Test circuit for measuring the frequency response when switch is in ON-state.

Fig 15. Test circuit for measuring feed-through attenuation when switch is in OFF-state.

Fig 16. Test circuit for measuring crosstalk between control input and output.

Fig 17. Test circuit for measuring injection charge.

15. Package outline

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m a x}$	$\mathbf{b p}_{\mathbf{p}}$	\mathbf{c}	\mathbf{D}	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{E}}$	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}
mm	1.1	0.1	0.30	0.25	2.2	1.35	1.3	0.65	2.2	0.45	0.25	0.2	0.2	0.1
	0.8	0.20	0.10	1.8	1.15	0.15	0.15	0.2	0.2					

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT353			SC-88A		-	

Fig 18. Package outline SOT353.

detail X

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{b p}_{\mathbf{p}}$	\mathbf{c}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}
mm	1.1	0.100	0.40	0.26	3.1	1.7	0.95	3.0	0.6	0.33	0.2	0.2	0.1
	0.9	0.013	0.25	0.10	2.7	1.3	0.5	0.2	0.23	0	0.2		

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
		SC-74A		$02-04-16$		

Fig 19. Package outline SOT753.

16. Revision history

Table 14: Revision history

| Document ID | Release date | Data sheet status | Change notice | Order number | Supersedes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 74LVC1G384_1 | 20040226 | Product data | - | 939775012675 | - |

17. Data sheet status

Level	Data sheet status $[1]$	Product status $\underline{[2]}[3]$	Definition I
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.	
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

18. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

19. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

20. Contact information

For additional information, please visit http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

21. Contents

1 General description 1
2 Features 1
3 Quick reference data 1
4 Ordering information 2
5 Marking 2
6 Functional diagram 2
7 Pinning information 3
7.1 Pinning 3
7.2 Pin description 3
8 Functional description 3
8.1 Function table 3
9 Limiting values 4
10 Recommended operating conditions. 4
11 Static characteristics 5
12 Dynamic characteristics 10
13 Waveforms 11
14 Additional dynamic characteristics 14
15 Package outline 18
16 Revision history 20
17 Data sheet status 21
18 Definitions 21
19 Disclaimers. 21
20 Contact information 21
© Koninklijke Philips Electronics N.V. 2004
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

